Currently, the following QSRs are included in the library:

ID Name Links Reference
argd Qualitative Distance Calculus descr. | api [7]
argprobd Probablistic Qualitative Distance Calculus descr. | api  
cardir Cardinal Directions descr. | api [1]
mos Moving or Stationary descr. | api  
mwe Minimal Working Example descr. | api  
qtcbs Qualitative Trajectory Calculus b descr. | api [8] [9]
qtccs Qualitative Trajectory Calculus c descr. | api [8] [9]
qtcbcs Qualitative Trajectory Calculus bc descr. | api [8] [9]
ra Rectangle Algebra descr. | api [5]
rcc2 Region Connection Calculus 2 descr. | api [2] [3]
rcc4 Region Connection Calculus 4 descr. | api [2] [3]
rcc5 Region Connection Calculus 5 descr. | api [2] [3]
rcc8 Region Connection Calculus 8 descr. | api [2] [3]
tpcc Ternary Point Configuration Calculus descr. | api [4]

Special Topics

Allen’s Interval Algebra

Allen’s Interval Algebra is a calculus for temporal reasoning. For further details see this page.

Qualitative Spatio-Temporal Activity Graphs

QSRlib provides also functionalities to represent time-series QSRs as a graph structure, called Qualitative Spatio-Temporal Activity Graphs (QSTAG). For details, please refer to its documentation.


[1]Frank, A. U. 1990. Qualitative Spatial Reasoning about Cardinal Directions. In Mark, M., and White, D., eds., Au- tocarto 10. Baltimore: ACSM/ASPRS.
[2](1, 2, 3, 4)
    1. Randell, Z. Cui and A. G. Cohn: A spatial logic based on regions and connection. In Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, pp. 165–176, 1992.
[3](1, 2, 3, 4)
    1. Cohn, B. Bennett, J. Gooday and M. M. Gotts: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. GeoInformatica, 1, pp. 275–316, 1997.
[4]Moratz, R.; Nebel, B.; and Freksa, C. 2003. Qualita- tive spatial reasoning about relative position: The tradeoff between strong formal properties and successful reasoning about route graphs. In Freksa, C.; Brauer, W.; Habel, C.; and Wender, K. F., eds., Lecture Notes in Artificial Intelligence 2685: Spatial Cognition III. Berlin, Heidelberg: Springer Verlag. 385–400.
  1. Balbiani, J.-F. Condotta and L. F. del Cerro: A model for reasoning about bi-dimensional temporal relations. In Proc. of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR‘98), A.G. Cohn, L. K. Schubert and S. C. Shapiro (eds). Morgan Kaufmann, pp. 124–130. Trento, Italy, June 2–5 1998.
  1. Chen, A. G. Cohn, D. Liu, S. Wang, J. Ouyang and Q. Yu: A survey of qualitative spatial representations. The Knowledge Engineering Review, 30 , pp 106-136, 2015.
[7]Clementini, E.; Felice, P. D.; and Hernandez, D. 1997. Qualitative representation of positional information. Artificial Intelligence 95(2):317–356.
[8](1, 2, 3) Van de Weghe, N.; Cohn, A.; De Tre ́, B.; and De Maeyer, P. 2005. A Qualitative Trajectory Calculus as a basis for representing moving objects in Geographical Information Systems. Control and Cybernetics 35(1):97–120.
[9](1, 2, 3) Delafontaine, M.; Cohn, A. G.; and Van de Weghe, N. 2011. Implementing a qualitative calculus to analyse moving point objects. Expert Systems with Applications 38(5):5187–5196.